The Hochschild Cohomology Ring modulo Nilpotence of a Monomial Algebra
نویسنده
چکیده
For a finite dimensional monomial algebra Λ over a field K we show that the Hochschild cohomology ring of Λ modulo the ideal generated by homogeneous nilpotent elements is a commutative finitely generated Kalgebra of Krull dimension at most one. This was conjectured to be true for any finite dimensional algebra over a field in [13].
منابع مشابه
Hochschild Cohomology and Support Varieties for Tame Hecke Algebras
We give a basis for the Hochschild cohomology ring of tame Hecke algebras. We then show that the Hochschild cohomology ring modulo nilpotence is a finitely generated algebra of Krull dimension 2, and describe the support varieties of modules for these algebras.
متن کاملFinite Groups Acting Linearly: Hochschild Cohomology and the Cup Product
When a finite group acts linearly on a complex vector space, the natural semi-direct product of the group and the polynomial ring over the space forms a skew group algebra. This algebra plays the role of the coordinate ring of the resulting orbifold and serves as a substitute for the ring of invariant polynomials from the viewpoint of geometry and physics. Its Hochschild cohomology predicts var...
متن کاملHochschild and Ordinary Cohomology Rings of Small Categories
Let C be a small category and k a field. There are two interesting mathematical subjects: the category algebra kC and the classifying space |C| = BC. We study the ring homomorphism HH∗(kC) → H∗(|C|, k) and prove it is split surjective, using the factorization category of Quillen [16] and certain techniques from functor cohomology theory. This generalizes the well-known results for finite groups...
متن کاملThe Lie Module Structure on the Hochschild Cohomology Groups of Monomial Algebras with Radical Square Zero
We study the Lie module structure given by the Gerstenhaber bracket on the Hochschild cohomology groups of a monomial algebra with radical square zero. The description of such Lie module structure will be given in terms of the combinatorics of the quiver. The Lie module structure will be related to the classification of finite dimensional modules over simple Lie algebras when the quiver is give...
متن کامل